Flame Retardant Materials - Overview

November 4, 2004 TURI Workshop Susan D. Landry Albemarle Corporation susan_landry@albemarle.com

Acronyms

ABS	Acrylonitrile Butadiene Styrene
APP	Ammonium polyphosphate
BSEF	Bromine Science & Environmental Foru
BrFR	Brominated flame retardant
Deca-BDE	Decabromodiphenyl ether
EEE	Electrical and electronic equipment
EPS	Expandable polystyrene foam
FR	Flame retardant
GPPS	General purpose polystyrene
HBCD	Hexabromocyclododecane
HIPS	High-impact polystyrene

Melamine	Melamine cyanurate or polyphosphate
PA	Polyamide
PC	Polycarbonate
Penta-BDB	Pentabromodiphenyl ether
PFR	Phosphorus flame retardant
РО	Polyolefins
PPO	Polyphenylene oxide
PU	Polyurethane
PVC	Polyvinyl chloride
Sb ₂ O ₃	Antimony trioxide
ТВВРА	Tetrabromobisphenol A
KPS	Extruded polystyrene foam

Why are flame retardants used?

- Save lives
- Reduce injury
- Reduce economic loss
- Reduce local environmental pollutants that are a result of fires

Description of the United States During 2002, by Michael J. Karter, Jr. & Fre Loss in the United States During 2002, by Michael J. Karter, Jr. & Fre Loss in the United States During 2003, by Michael J. Karter, Jr. & Fre Loss in the United States During 2003, by Michael J. Karter, Jr.

2002 & 2003 Fire Statistics 519,000 & 519,500 Structural Fires – 2775

- & 3,365 deaths•77% & 80% occurred in residential properties
- 329,500 & 312,000 Vehicle Fires 565 & 465 deaths
- ■839,000 & 753,000 Outside Fires 40 & 65 deaths

Source: Fire Loss in the United States During 2002, by Michael J. Karter, Jr. & Fire Loss in the United States During 2003, by Michael J. Karter, Jr.

How Do Flame Retardants Work?

Fire starts in 3 main ways

- Accidents
- Deliberate ignition or arson
- Equipment failure (electrical malfunctions or overheating)
- How do you prevent fire?
 - The best solution is to prevent it from starting

How Do Flame Retardants Work? Flame retardants reduce the heat supplied to the polymer Modify the rate of chemical and physical processes Perform their action in the initial stages of a fire

Vapor phase mechanism
 Condensed phase mechanism
 Combination of both

FR action is not an instantaneous single event, but a combination of events over a wide range of temperature

Flame Poisoning

Interrupt the physical and chemical processes of the combustion

•Reduce the exothermic processes, cool down the system, reduce the supply of the flammable gases and eventually suppress the fire

Halogenated flame retardants

Intumescence

- Condensed phase mechanism
- By formation of a foamed char on the surface of the polymer
 - Physical barrier to heat and mass transfer leading to reduced smoke production and dripping
- Compounds that are "carbonific" and "spumific"
 - Inorganic acids (formed in situ), carbon-rich compounds and organic amine or amides

Cooling Effect

Creation of a heat-sink by a compound that decomposes in an endothermic process

- •Also gives off non-combustible volatile products
- •Lower effectiveness and hence high concentration of FR required
- Metal hydroxides like Al(OH)₃ and Mg(OH)₂

Char Formation

- Combustible condensed phase shielded from gaseous phase with a solid or liquid protective layer
 - Condensed phase cooled, oxygen is excluded and heat transfer impeded
 - Phosphorus based compounds in cellulosic materials, certain P/N compounds and borates

Dilution

- By incorporating inert substances
- Evolve inert gases on decomposition, dilutes the fuel both in solid and gas phases and lowers the ignition point of the gas mixture
- Chalk, talc and other fillers

Melt-Dripping

- Polymer break down accelerated
- Increases the flow of the polymer and withdraws the flame away from the sphere of influence
- Radical initiators, aliphatic and alicyclic halides

Types of FR Additives

- Halogenated FRs
 - Mainly bromine containing, some chlorine
- Phosphorus containing FRs
 - Mainly phosphates
- Inorganic Materials
 - Primary FRs and synergists
- Other additives
 - Nitrogen, boron based & others

Brominated Flame Retardants

- Aromatic, aliphatic, and alicyclic brominated compounds
- Effective vapor phase agents
 - When used by themselves, they get into the vapor phase along with fuel and interfere with the physical/chemical aspects of the flame
 - When used with antimony trioxide, they get into the vapor phase as antimony tribromide and interfere with the physical/chemical aspects of the flame

Phosphorus FRs

Red phosphorus

- Phosphates that work in condensed phase
 Ammonium polyphosphate, melamine pyro and, polyphosphates etc...
- Organo phosphorus compounds that act in vapor/condensed phases
 - Resorcinol & bis-phenol-A phosphates, halophosphates
- Organo phosphorus compounds that act largely in vapor phase
 Triphenylphosphate

Other FRs Other FRs Other FRs Other State Other State

Very limited applications

Intumescent Flame Retardants

Intumescent flame retardants

- Specific to polymer and application
- Combination of nitrogen and phosphorus
- •Single compound or multicomponent system
- Acid, amine and carbon-rich compounds
- Phosphorus acid salts; melamine and other triazine derivatives; pentaerythritol derivatives

Where are Flame Retardants Used?

- Thermoplastic Resins
 - Styrenic resins
 - Engineering resins
 - Polyolefins
 - Others
- Thermoset Resins
 - Polyester
 - Polyurethane

 Uppolstery Fabric
 Headliner

 Dashboard
 Trunk Liner

 Utimese
 Trunk Liner

 Utimese
 Sound to

 Utimese
 Sound to

 Utimese
 Carpet

 Utimese
 Sound to

 Utimese
 Sound to

Flame Retardant Selection Criteria

- Match up decomposition temp of FR with self-ignition temp of polymer
- Thermal stability for processing
- FR Efficiency
- Ability to meet particular fire safety standards
- Human Health & Environmental Profile
- Effect on physical properties
- Melt flow
- UV stability
- Non-blooming
- Cost in use
- Electrical properties
- Thermal aging
- Recyclability

Flame Retardant Styrenics

GPPS - EPS and XPS foams

- Uses additive BrFRs HBCD is most common, very limited use of other aliphatic BrFRs
- High-Impact Polystyrene (HIPS) EEE
 - Uses additive BrFRs Deca-BDE is most common for TV backs, others used in this and other applications
- Acrylonitrile Butadiene Styrene (ABS) EEE
 Uses additive BrFRs
- Various Alloys EEE
 - PPO/HIPS Uses additive PFRs
 PC/ABS Uses additive PFRs

Flame Retardant PA & Thermoplastic Polyesters

PA, PBT, PET, PTT, PCT – Electrical & Automotive

- Electrical Uses additive BrFRs, red P, melamine
 Connectors
 - Switches
- Automotive Uses additive BrFRs, red P, melamine
- Electrical connectors and switches
- Small appliance housings
- Conduit
- Enclosures
- Note -

Melamine cyanurate used in unfilled PA, melamine polyphosphate used in PBT

Flame Retardant Polyolefins

Polypropylene

- Wire nuts, slit film (raffia, carpet backing), some enclosures, electronic components (Christmas tree light strings), small appliance housings – Uses additive BrFRs, mineral FRs, melamine & APP (small volume, as synergist)
- Polyethylene, EEA and EVA
 - Wire and cable, film/sheeting (construction, outdoor tarps, geomembranes) – Uses additive BrFRs, Mineral FRs, APP
- Thermoplastic olefin
 - Single-ply roofing membrane Uses Mineral FRs, additive BrFRs

Other Flame Retardant Resins

PVC

Wire & cable, conveyor belts, flooring, foam, hoses, profiles, roofing, tubes & pipes – Uses Sb₂O₃ (only), mineral FRs, BrFRs (small volume, many as plasticizers)

Textile Coatings

 Building furniture and drapery backing, floor covering, auto fabric backing - Uses BrFRs, mineral FRs

Flame Retardant Epoxy

Epoxy

 Circuit boards, coatings (novolac encapsulation resins) – typically uses reactive BrFRs (especially TBBPA), mineral FRs (small volume), N-P-type products (very small volume)

Flame Retardant Thermoset Polyesters & Vinyl Esters

 Unsaturated Polyesters & Vinyl Esters
 Building panels, electrical connection boxes, industrial containers, floor grating – Uses both reactive and additive BrFRs, melamine & APP (small volume)

Flame Retardant Polyurethanes

Rigid PU Foam

 Construction & building panels – Uses reactive BrFRs and both reactive & additive PFRs

Flexible PU Foam

 Auto, public furnishings, residential furnishings (CA residents), & industrial bedding – Historically used Penta-BDE in US and PFRs in EU; now looking at both additive and reactive BrFRs (that contain P), additive PFRs

Application	Polymer	Typical FRs Used
Cushioning & Insulation	PU Foam	BrFRs & PFRs
	Textile	BrFRs, PFRs, Mineral FRs
Building, Textile Coatings, and Wire & Cable	EPS, XPS	HBCD
	PO	BrFRs, PFRs, Mineral FRs
	PVC	Sb ₂ O ₃ , Mineral FRs, BrFRs
Electrical Components	PBT/PET/Nylon	BrFRs, PFRs, melamine
	HIPS	BrFRs
Business Equipment, TV's, & Appliances	PC/ABS, PPO/HIPS	PFRs
	ABS	BrFRs
Printed Wiring Boards	Ероху	TBBPA

